lunes, 31 de enero de 2011

FORMAS DE ELECTRIZACION Y DETECCIÓN

Cuando a un cuerpo se le dota de propiedades eléctricas, es decir, adquiere cargas eléctricas, se dice que ha sido electrizado. 

La electrización es uno de los fenómenos que estudia la electrostática.

A.- Electrización por contacto
Se puede cargar un cuerpo con sólo tocarlo con otro previamente cargado. En este caso, ambos quedan con el mismo tipo de carga, es decir, si toco un cuerpo neutro con otro con carga positiva, el primero también queda con carga positiva.

B.- Electrización por frotamiento
Al frotar dos cuerpos eléctricamente neutros (número de electrones = número de protones), ambos se cargan, uno con carga positiva y el otro con carga negativa.
Si frotas una barra de vidrio con un paño de seda, hay un traspaso de electrones del vidrio a la seda.
Si frotas un lápiz de pasta con un paño de lana, hay un traspaso de electrones del paño a al lápiz.

C.- Electrización por inducción
Un cuerpo cargado eléctricamente puede atraer a otro cuerpo que está neutro. Cuando acercamos un cuerpo electrizado a un cuerpo neutro, se establece una interacción eléctrica entre las cargas del primero y el cuerpo neutro.
Como resultado de esta relación, la redistribución inicial se ve alterada: las cargas con signo opuesto a la carga del cuerpo electrizado se acercan a éste.
En este proceso de redistribución de cargas, la carga neta inicial no ha variado en el cuerpo neutro, pero en algunas zonas está cargado positivamente y en otras negativamente
Decimos entonces que aparecen cargas eléctricas inducidas. Entonces el cuerpo electrizado induce una carga con signo contrario en el cuerpo neutro y por lo tanto lo atrae.

En términos de movimiento de electrones, cuando...
A.- Un objeto con carga positiva se conecta a tierra:
Existe un flujo de electrones de tierra hasta la carga, carga neutra.
B.- Una esfera con carga negativa se pone en contacto con una neutra:
Existe un flujo de electrones de la carga hacia tierra.
C.- Una barra con carga positiva se acerca a una placa metálica neutra y aislada:
Se atraen los cuerpos.


 http://www.pps.k12.or.us/district/depts/edmedia/videoteca/curso3/htmlb/SEC_65.HTM

CONSERVACION DE LA CARGA.......... C:

Todo objeto cuyo número de electrones sea distinto al de protones tiene carga eléctrica. Si tiene más electrones que protones la carga es negativa. Si tiene menos electrones que protones, la carga es positiva.
Los electrones no se crean ni se
destruyen, sino que simplemente se transfieren de un material a otro. Cuando un cuerpo es electrizado por otro, la cantidad de electricidad que recibe uno de los cuerpos es igual a la que cede el otro. La carga se conserva. En todo proceso, ya sea en gran escala o en el nivel atómico y nuclear, se aplica el concepto de conservación de la carga. Jamás se ha observado caso alguno de creación o destrucción de carga neta. La conservación de la carga es una de las piedras angulares de la física, a la par con la conservación de la energía de la cantidad de movimiento.
Todo objeto con carga eléctrica tiene un exceso o una deficiencia de cierto número entero de electrones: los electrones no se pueden dividir en fracciones. Esto significa que la carga del objeto es un múltiplo entero de la carga del electrón. El objeto no puede poseer una carga igual a 1.5 o a 1000.5 electrones, por ejemplo. Todos los objetos cargados que se han observado hasta ahora
tienen una carga que es un múltiplo entero de la carga de un solo electrón.


http://www.monografias.com/trabajos60/electricidad/electricidad2.shtml

CARGA ELECTRICA! :P

La electricidad en la naturaleza
La carga eléctrica es una de las propiedades básicas de la materia. Aunque la comprensión extensa de sus manifestaciones se resistió durante siglos al escrutinio de la ciencia, ya hacia el año 600 a. C. los filósofos griegos describieron con detalle el experimento por el cual una barra de ámbar frotado atrae pequeños pedacitos de paja u otro material ligero (electrización por frotamiento).
Los fenómenos eléctricos, indivisiblemente unidos a los magnéticos, están presentes en todas partes, ya sea en las tormentas, la radiación solar o el cerebro humano. Modernamente, sus propiedades se aprovechan en múltiples campos de actividad, y la electricidad se ha convertido en una forma esencial de consumo y transporte de energía.
Por su naturaleza eléctrica, los cuerpos físicos se clasifican en conductores, que transmiten la electricidad fácilmente, y aislantes o dieléctricos, que oponen una resistencia elevada a su paso. Los semiconductores presentan una conductividad intermedia entre estas dos clases.
Cargas eléctricas
En física, la carga eléctrica es una propiedad intrínseca de algunas partículas subatómicas (pérdida o ganancia de electrones) que se manifiesta mediante atracciones y repulsiones que determinan las interacciones electromagnéticas entre ellas. La materia cargada eléctricamente es influida por los campos electromagnéticos siendo, a su vez, generadora de ellos. La interacción entre carga y campo eléctrico origina una de las cuatro interacciones fundamentales: la interacción electromagnética.

La esencia de la electricidad es la carga eléctrica. Esta cualidad existe en dos clases distintas, que se denominan cargas positivas y negativas. Las cargas eléctricas de la misma clase o signo se repelen mutuamente y las de signo distinto se atraen.
En el estado normal de los cuerpos materiales, las cargas eléctricas mínimas están compensadas, por lo que dichos cuerpos se comportan eléctricamente como neutros. Hace falta una acción externa para que un objeto material se electrice.

 

La carga eléctrica es una de las propiedades básicas de la materia. Aunque la comprensión extensa de sus manifestaciones se resistió durante siglos al escrutinio de la ciencia, ya hacia el año 600 a. C. los filósofos griegos describieron con detalle el experimento por el cual una barra de ámbar frotado atrae pequeños pedacitos de paja u otro material ligero (electrización por frotamiento).
Los fenómenos eléctricos, indivisiblemente unidos a los magnéticos, están presentes en todas partes, ya sea en las tormentas, la radiación solar o el cerebro humano. Modernamente, sus propiedades se aprovechan en múltiples campos de actividad, y la electricidad se ha convertido en una forma esencial de consumo y transporte de energía.
Por su naturaleza eléctrica, los cuerpos físicos se clasifican en conductores, que transmiten la electricidad fácilmente, y aislantes o dieléctricos, que oponen una resistencia elevada a su paso. Los semiconductores presentan una conductividad intermedia entre estas dos clases.


BIBLIOGRAFIA
http://www.hiru.com/fisica/la-carga-electrica-ley-de-coulomb
http://www.textoscientificos.com/fisica/campos

miércoles, 26 de enero de 2011

El Sonido

Equipo
4.5 El sonido como ejemplo.’ que es el sonido?
4.6 Algunas aplicaciones tecnológicas y en la salud
1
El fenómeno del sonido está relacionado con la vibración de los cuerpos materiales. Siempre que escuchamos un sonido, hay un cuerpo material que vibra y produce este fenómeno. Por ejemplo, cuando una persona habla, el sonido que emite es producido por las vibraciones de sus cuerdas vocales; cuando tocamos un tambor, un pedazo de madera o uno de metal, estos cuerpos vibran y emiten sonidos; las cuerdas de un piano o un violín también son sonoras cuando se encuentran en vibración, etc.
el ultrasonido es una técnica que ha sido desarrollada para el diagnóstico. Esta técnica es muy simple: se produce un sonido con una frecuencia entre 1 y 5 MHz que se dirige al interior del cuerpo, esta onda, al encontrar un obstáculo, va a reflejarse en parte y la parte que penetra lo hará hasta el siguiente obstáculo. El tiempo que requieren los pulsos de sonido para ser reflejados nos da información sobre la distancia a la que se encuentran los obstáculos que producen la reflexión, que en este caso serán los órganos u otro tipo de estructuras que se encuentren en el interior del cuerpo
2
Es cualquier fenómeno que involucre la propagación en forma de ondas elásticas (sean audibles o no), generalmente a través de un fluido (u otro medio elástico) que esté generando el movimiento vibratorio de un cuerpo.
Las fotografías de rayos X o radiografías y el fluoroscopio se emplean mucho en medicina como herramientas de diagnóstico.
3
El sonido solo se produce cuando un cuerpo vibra muy rápidamente. Se producen sonidos audibles cuando un cuerpo vibra con una frecuencia comprendida entre 20 y 20000 Hz  El sonido se transmite a través de medios materiales, sólidos, líquidos o gaseosos pero nunca a través del vacío.  El sonido es una onda. Una onda es una perturbación que se propaga por el espacio. En una onda se propaga energía, no materia. n todos los sonidos que percibimos se pueden distinguir tres cualidades: sonoridad, tono y timbre.
1.4.1. Ondas radio:
El uso más habitual de las ondas de radio con efecto terapéutico se lleva a cabo mediante el uso de corrientes alternas de frecuencia superior a los 100 KHz.
A diferencia de las corrientes alternas de frecuencia menor, las ondas de radio no tienen un efecto excito motor (estimulante del sistema neuromuscular), sino que producen en el organismo un efecto térmico. Gracias a las ondas de radio se dispone de un mecanismo para realizar una termoterapia en el interior del organismo de manera homogénea.
En la actualidad, las ondas de radio se emplean sobre todo en el tratamiento denominado onda corta. Se trata de un tipo de corriente alterna de alta frecuencia caracterizada por tener una longitud de onda comprendida entre 1 y 30 metros (10-300 MHz). La onda corta, debido a su alta frecuencia es capaz de atravesar toda clase de cuerpos, tanto conductores como no conductores, pero es en los cuerpos conductores donde se produce un calentamiento apreciable debido al efecto Joule.
Aparte de su efecto térmico, la onda corta posee otros efectos como son el aumento de la circulación (hiperemia), aumento leucocitario pasajero y acción analgésica y antiinflamatoria.
Recientemente se sigue investigando en la utilización de ondas de radio en medicina pero no tanto con fines terapéuticos sino más bien de observación. Estas técnicas se basan sobre todo en el empleo de ondas de radio conjuntamente con campos magnéticos, de manera similar a como se combinan campos magnéticos y eléctricos en la Resonancia Magnética.
1.4.2. Microondas:
Las ondas microondas tienen muchas aplicaciones. Una de ellas es la de los hornos. Su funcionamiento se basa en el hecho de que la radiación electromagnética de muy alta frecuencia tiene mucha energía, por lo que hay una transferencia de calor muy grande a los alimentos en poco tiempo.
Las comunicaciones y el radar son otras dos aplicaciones de las microondas.
1.4.3. Infrarrojos:
Los rayos infrarrojos se utilizan comúnmente en nuestra vida cotidiana: cuando encendemos el televisor y cambiamos de canal con nuestro mando a distancia; en el supermercado, nuestros productos se identifican con la lectura de los códigos de barras; vemos y escuchamos los discos compactos... todo, gracias a los infrarrojos. Estas son sólo algunas de las aplicaciones más simples, ya que se utilizan también en sistemas de seguridad, estudios oceánicos, medicina, etc.
1.4.4. Los rayos X:
Los rayos X se emplean sobre todo en los campos de la investigación científica, la industria y la medicina.
El estudio de los rayos X ha desempeñado un papel primordial en la física teórica, sobre todo en el desarrollo de la mecánica cuántica. Como herramienta de investigación, los rayos X han permitido confirmar experimentalmente las teorías cristalográficas. Utilizando métodos de difracción de rayos X es posible identificar las sustancias cristalinas y determinar su estructura. . Los métodos de difracción de rayos X también pueden aplicarse a sustancias pulverizadas que, sin ser cristalinas, presentan alguna regularidad en su estructura molecular. Mediante estos métodos es posible identificar sustancias químicas y determinar el tamaño de partículas ultramicroscópicas. Los elementos químicos y sus isótopos pueden identificarse mediante espectroscopia de rayos X, que determina las longitudes de onda de sus espectros de líneas característicos. Varios elementos fueron descubiertos mediante el análisis de espectros de rayos X.
Muchos productos industriales se inspeccionan de forma rutinaria mediante rayos X, para que las unidades defectuosas puedan eliminarse en el lugar de producción. Existen además otras aplicaciones de los rayos X, entre las que figuran la identificación de gemas falsas o la detección de mercancías de contrabando en las aduanas; también se utilizan en los aeropuertos para detectar objetos peligrosos en los equipajes. Los rayos X ultra blandos se emplean para determinar la autenticidad de obras de arte y para restaurar cuadros.
Las fotografías de rayos X o radiografías y el fluoroscopio se emplean mucho en medicina como herramientas de diagnóstico. En la radioterapia se emplean rayos X para tratar determinadas enfermedades, en particular el cáncer, exponiendo los tumores a la radiación.
1.4.5. Rayos gamma:
Los rayos gamma provenientes del cobalto 60 se utilizan para esterilizar instrumentos que no pueden ser esterilizados por otros métodos, y con riesgos considerablemente menores para la salud.
Los rayos gamma también son utilizados en la radioterapia
4
es una propagación de ondas elásticas , generando un movimiento vibratorio.
Ondas electromagnéticas .se puede ver en un horno de microondas.
5
El sonido, en física, es cualquier fenómeno que involucre la propagación en forma de ondas elásticas (sean audibles o no), generalmente a través de un fluido (u otro medio elástico) que esté generando el movimiento vibratorio de un cuerpo.
Ondas radio:
El uso más habitual de las ondas de radio con efecto terapéutico se lleva a cabo mediante el uso de corrientes alternas de frecuencia superior a los 100 KHz.
6
Cuando se produce una perturbación periódica en el aire, se originan ondas sonoras longitudinales. Por ejemplo, si se golpea un diapasón
con un martillo, las ramas vibratoria emiten ondas longitudinales. El oído, que actúa como receptor de estas ondas periódicas, las interpreta como sonido.
El término sonido se usa de dos formas distintas. Los fisiólogos definen el sonido en término de las sensaciones auditivas producidas por perturbaciones longitudinales en el aire. Para ellos, el sonido no existe en un planeta distante. En física, por otra parte, nos referimos a las perturbaciones por sí mismas y no a las sensaciones que producen.
El uso más habitual de las ondas de radio con efecto terapéutico se lleva a cabo mediante el uso de corrientes alternas de frecuencia superior a los 100 KHz.
A diferencia de las corrientes alternas de frecuencia menor, las ondas de radio no tienen un efecto excito motor (estimulante del sistema neuromuscular), sino que producen en el organismo un efecto térmico. Gracias a las ondas de radio se dispone de un mecanismo para realizar una termoterapia en el interior del organismo de manera homogénea.
Microondas:
Las ondas microondas tienen muchas aplicaciones. Una de ellas es la de los hornos. Su funcionamiento se basa en el hecho de que la radiación electromagnética de muy alta frecuencia tiene mucha energía, por lo que hay una transferencia de calor muy grande a los alimentos en poco tiempo.
Las comunicaciones y el radar son otras dos aplicaciones de las microondas.
Infrarrojos:
Los rayos infrarrojos se utilizan comúnmente en nuestra vida cotidiana: cuando encendemos el televisor y cambiamos de canal con nuestro mando a distancia; en el supermercado, nuestros productos se identifican con la lectura de los códigos de barras; vemos y escuchamos los discos compactos... todo, gracias a los infrarrojos. Estas son sólo algunas de las aplicaciones más simples, ya que se utilizan también en sistemas de seguridad, estudios oceánicos, medicina, etc.
Los rayos X:
Los rayos X se emplean sobre todo en los campos de la investigación científica, la industria y la medicina.
El estudio de los rayos X ha desempeñado un papel primordial en la física teórica, sobre todo en el desarrollo de la mecánica cuántica. Como herramienta de investigación, los rayos X han permitido confirmar experimentalmente las teorías cristalográficas. Utilizando métodos de difracción de rayos X es posible identificar las sustancias cristalinas y determinar su estructura. . Los métodos de difracción de rayos X también pueden aplicarse a sustancias pulverizadas que, sin ser cristalinas, presentan alguna regularidad en su estructura molecular. Mediante estos métodos es posible identificar sustancias químicas y determinar el tamaño de partículas ultramicroscópicas. Los elementos químicos y sus isótopos pueden identificarse mediante espectroscopia de rayos X, que determina las longitudes de onda de sus espectros de líneas característicos. Varios elementos fueron descubiertos mediante el análisis de espectros de rayos X.
Muchos productos industriales se inspeccionan de forma rutinaria mediante rayos X, para que las unidades defectuosas puedan eliminarse en el lugar de producción. Existen además otras aplicaciones de los rayos X, entre las que figuran la identificación de gemas falsas o la detección de mercancías de contrabando en las aduanas; también se utilizan en los aeropuertos para detectar objetos peligrosos en los equipajes. Los rayos X ultra blandos se emplean para determinar la autenticidad de obras de arte y para restaurar cuadros.
Las fotografías de rayos X o radiografías y el fluoroscopio se emplean mucho en medicina como herramientas de diagnóstico. En la radioterapia se emplean rayos X para tratar determinadas enfermedades, en particular el cáncer, exponiendo los tumores a la radiación.
Rayos gamma:
Los rayos gamma provenientes del cobalto 60 se utilizan para esterilizar instrumentos que no pueden ser esterilizados por otros métodos, y con riesgos considerablemente menores para la salud.
Los rayos gamma también son utilizados en la radioterapia.



EL SONIDO  PRACTICA

MATERIAL: LIGAS, HILO, VASOS  DE PLASTICO, AGUJA, BOTELLAS DE VIDRIO VACIAS, BATUTA DE PLASTICO Y METALICA.
PROCEDIMIENTO:
1.- GENERACION DE SONIDOS
- ENGARZAR LAS LIGAS PARA FORMAR UNA CADENA, FIJAR LA CADENA POR LOS EXTREMOS A LOS BARROTES DE CONTATOS, EN LA PARTE CENTRAL  AMARRAR EL HILO Y FIJAR EL OTRO EXTREMO EN EL TUBO DE LA PARED DEL FONDO DEL LABORQATORIO.
HACER VIBRAR MEDIANTE PULSOS LA LIGA,  EN FORMA   HORIZONTAL Y VERTICAL. ANOTAR LOS CAMBIOS PRODUCIDOS.

2.- TRANSMISION DEL SONIDO.
- EN EL FONDO DEL VASO DE PLASTICO AMARAR EL HILO PERFORANDO EL VASO CON LA  AGUJA, MEDIR LA DISTANCIA DE  LA MESA DE UN EQUIPO AL OTRO EXTREMO DEL EQUIPO Y UNIR EL OTRO VASO DE LA MISMA FORMA. HABLA A TRAVES DE CADA ASO DE EQUIPO A EQUIPO.

3.- FONOBOTELLA.
COLOCAR EN FILA LAS SIETE BOTELLAS, Y LLENARLAS CON AGUA MIDIENDO CON QUINCE ML DE AGUA LA PRIMERA, 30 ML LA SEGUNDA ETC.
GENERAR LOS DIFERENTES SONIDOS CON LAS VARILLAS DE PLASTICO Y VIDRIO.ANOTAR LOS CAMBISO  OBSERVADOS.
4.6 Algunas aplicaciones tecnológicas y en la salud
Algunas de las aplicaciones del sonido las encontramos en los instrumentos musicales y en la música. Los especialistas en sonido (ingeniero de sonido) aplican sus conocimientos en ésta rama de la física para fabricar habitaciones o salones de música donde no se produce el fenómeno de la reverberación. Dichos especialistas utilizan fibras de vidrios con el que obtienen mejor sonido.

En el campo de la medicina, los nefrólogos, especialista de las vías urinarias, utiliza el ecógrafo. Este aparato emite ultrasonido y con ello hacen exploraciones en el interior del cuerpo humano, esto se debe al fenómeno de la reflexión, lo que permite obtener gráficas de la situación del o los órganos explorados.
Otro aparato que utilizan tanto los nefrólogos, urólogos y gastroenterólogos es el fonógrafo que al igual que el ecógrafo utiliza los ultrasonidos para hacer exploraciones internas, pero a través de este aparato en lugar de obtener gráficas se obtienen imágenes del o de los órganos explorados.
Tanto el ecógrafo como el fonógrafo son muy usados en estos tiempos y han ido sustituyendo en gran medida a los Rayos X, ya que las radiaciones pueden producir daños en los tejidoscelulares del cuerpo y en el fetode las mujeres embarazadas. http://www.youtube.com/watch?v=C-_B5dFvDn8&feature=related

Otro aparato utilizado por los médicos para eliminar piedras de los riñones, (cálculo renal), es el nefroscopio, que también emite ultrasonidos, haciendo posible la visualización de los riñones en una pantalla cuando se hacen coincidir las ondas ultrasónicas sobre la piedra en el riñón. Estas piedras son desintegradas y más tarde son expulsadas a través de la orina del paciente.

Ondas y Particulas SEMANA ENERO 17-21


Las ondas tienen bastantes propiedades específicas (por ejemplo, difracción, interferencias, efecto
 Doppler,..) que, según el punto de vista de la física clásica, no pueden tener las partículas, y estas propiedades deberían servir para diferenciar los dos procesos. Así, por ejemplo, al atravesar una rendija:
Si lo hace un chorro de partículas (dibujos de arriba) no se producirá difracción. Casi todas seguirán en línea recta después de pasar por la rendija y al incidir en una pantalla debe producir un máximo de intensidad enfrente de la abertura y disminuir bruscamente dicha intensidad al alejarnos de esa zona.
En cambio, si lo hace una onda y el tamaño de la rendija es del orden de magnitud de la longitud de onda (dibujos de abajo), se producirá difracción y la intensidad recibida en una pantalla se debe distribuir por ella de una forma más homogénea.

En algunos casos es sencillo verificar que se cumplen éstas y otras predicciones experimentales que deberían permitir diferenciar las ondas de un chorro de partículas viajeras. Por ejemplo, no existe duda de que por la superficie del agua se transmiten ondas mecánicas transversales, de que el sonido se transmite por el aire y por otros medios materiales mediante ondas longitudinales o de que una escopeta de repetición puede actuar como foco de un chorro de perdigones.

Las cosas se complican cuando se somete a este tipo de pruebas a la luz y también a radiaciones formadas por partículas atómicas y/o subatómicas. En estos casos se observan comportamientos, que la física clásica no puede explicar.
La luz se comporta como una onda (no mecánica) que se refracta, se difracta, produce interferencias al atravesar una rendija doble o múltiple, etc. Pero, la propia luz también actúa como un chorro de corpúsculos en bastantes procesos en los que sus cuantos de energía (fotones) interaccionan con partículas subatómicas.



Lo mismo ocurre con las partículas como electrones, protones, etc. En el efecto fotoeléctrico, por ejemplo, la luz ilumina un metal y sus corpúsculos (fotones) empujan uno a uno a los electrones del metal, que en este proceso se comportan como partículas.
Sin embargo, un haz de estos mismos electrones experimenta difracción cuando pasa por un pequeño orificio circular de tamaño suficientemente pequeño.  También dos haces de electrones producen interferencias en un experimento consistente en hacerlos pasar a través de una rendija de tamaño adecuado doble o múltiple.
Actualmente se considera que la dualidad onda-partícula es un “concepto de la mecánica cuántica según el cual no hay diferencias fundamentales entre partículas y ondas: las partículas pueden comportarse como ondas y viceversa”


BIBLIOGRAFIA

Algunas aplicaciones tecnologicas y en la salud SEMANA ENERO 17-21

El uso más habitual de las ondas de radio con efecto terapéutico se lleva a cabo mediante el uso de corrientes alternas de frecuencia superior a los 100 KHz.
A diferencia de las corrientes alternas de frecuencia menor, las ondas de radio no tienen un efecto excito motor (estimulante del sistema neuromuscular), sino que producen en el organismo un efecto térmico. Gracias a las ondas de radio se dispone de un mecanismo para realizar una termoterapia en el interior del organismo de manera homogénea.
En la actualidad, las ondas de radio se emplean sobre todo en el tratamiento denominado onda corta. Se trata de un tipo de corriente alterna de alta frecuencia caracterizada por tener una longitud de onda comprendida entre 1 y 30 metros (10-300 MHz). La onda corta, debido a su alta frecuencia es capaz de atravesar toda clase de cuerpos, tanto conductores como no conductores, pero es en los cuerpos conductores donde se produce un calentamiento apreciable debido al efecto Joule.
Aparte de su efecto térmico, la onda corta posee otros efectos como son el aumento de la circulación (hiperemia), aumento leucocitario pasajero y acción analgésica y antiinflamatoria.
Recientemente se sigue investigando en la utilización de ondas de radio en medicina pero no tanto con fines terapéuticos sino más bien de observación. Estas técnicas se basan sobre todo en el empleo de ondas de radio conjuntamente con campos magnéticos, de manera similar a como se combinan campos magnéticos y eléctricos en la Resonancia Magnética.
1.4.2. Microondas:
Las ondas microondas tienen muchas aplicaciones. Una de ellas es la de los hornos. Su funcionamiento se basa en el hecho de que la radiación electromagnética de muy alta frecuencia tiene mucha energía, por lo que hay una transferencia de calor muy grande a los alimentos en poco tiempo.
Las comunicaciones y el radar son otras dos aplicaciones de las microondas.
1.4.3. Infrarrojos:
Los rayos infrarrojos se utilizan comúnmente en nuestra vida cotidiana: cuando encendemos el televisor y cambiamos de canal con nuestro mando a distancia; en el supermercado, nuestros productos se identifican con la lectura de los códigos de barras; vemos y escuchamos los discos compactos... todo, gracias a los infrarrojos. Estas son sólo algunas de las aplicaciones más simples, ya que se utilizan también en sistemas de seguridad, estudios oceánicos, medicina, etc.
1.4.4. Los rayos X:
Los rayos X se emplean sobre todo en los campos de la investigación científica, la industria y la medicina.
El estudio de los rayos X ha desempeñado un papel primordial en la física teórica, sobre todo en el desarrollo de la mecánica cuántica. Como herramienta de investigación, los rayos X han permitido confirmar experimentalmente las teorías cristalográficas. Utilizando métodos de difracción de rayos X es posible identificar las sustancias cristalinas y determinar su estructura. . Los métodos de difracción de rayos X también pueden aplicarse a sustancias pulverizadas que, sin ser cristalinas, presentan alguna regularidad en su estructura molecular. Mediante estos métodos es posible identificar sustancias químicas y determinar el tamaño de partículas ultramicroscópicas. Los elementos químicos y sus isótopos pueden identificarse mediante espectroscopia de rayos X, que determina las longitudes de onda de sus espectros de líneas característicos. Varios elementos fueron descubiertos mediante el análisis de espectros de rayos X.
Muchos productos industriales se inspeccionan de forma rutinaria mediante rayos X, para que las unidades defectuosas puedan eliminarse en el lugar de producción. Existen además otras aplicaciones de los rayos X, entre las que figuran la identificación de gemas falsas o la detección de mercancías de contrabando en las aduanas; también se utilizan en los aeropuertos para detectar objetos peligrosos en los equipajes. Los rayos X ultra blandos se emplean para determinar la autenticidad de obras de arte y para restaurar cuadros.
Las fotografías de rayos X o radiografías y el fluoroscopio se emplean mucho en medicina como herramientas de diagnóstico. En la radioterapia se emplean rayos X para tratar determinadas enfermedades, en particular el cáncer, exponiendo los tumores a la radiación.
1.4.5. Rayos gamma:
Los rayos gamma provenientes del cobalto 60 se utilizan para esterilizar instrumentos que no pueden ser esterilizados por otros métodos, y con riesgos considerablemente menores para la salud.
Los rayos gamma también son utilizados en la radioterapia.


BIBLIOGRAFIA
http://www3.planalfa.es/santaceciliaca/ciencias%20naturales/FISICA%202%C2%BA%20BACH/Trabajos_Alumnos/Trabajos%20Alumnos/Ondas%20en%20medicina.pdf

El soniido como ejemplo SEMANA ENERO 17-21

El sonido solo se produce cuando un cuerpo vibra muy rápidamente. Se producen sonidos audibles cuando un cuerpo vibra con una frecuencia comprendida entre 20 y 20000 Hz  El sonido se transmite a través de medios materiales, sólidos, líquidos o gaseosos pero nunca a través del vacío.  El sonido es una onda. Una onda es una perturbación que se propaga por el espacio. En una onda se propaga energía, no materia. n todos los sonidos que percibimos se pueden distinguir tres cualidades: sonoridad, tono y timbre.

  • La sonoridad está relacionada con la intensidad del sonido. La intensidad de un sonido viene determinada por la amplitud del movimiento oscilatorio, subjetivamente, la intensidad de un sonido corresponde a nuestra percepción del mismo como más o menos fuerte. Cuando elevamos el volumen de la cadena de música o del televisor, lo que hacemos es aumentar la intensidad del sonido.
  • El tono está relacionado con la frecuencia. El tono de un sonido depende únicamente de su frecuencia, es decir, del número de oscilaciones por segundo. La altura de un sonido corresponde a nuestra percepción del mismo como más grave o más agudo. Cuando mayor sea la frecuencia, más agudo será el sonido. Esto puede comprobarse, por ejemplo, comparando el sonido obtenido al acercar un trozo de cartulina a una sierra de disco: cuando mayor sea la velocidad de rotación del disco más alto será el sonido producido.
  • El timbre está relacionado con la forma o la gráfica de la onda. El timbre es la cualidad del sonido que nos permite distinguir entre dos sonidos de la misma intensidad y altura. Podemos así distinguir si una nota ha sido tocada por una trompeta o un violín. Esto se debe a que todo sonido musical es un sonido complejo que puede ser considerado como una superposición de sonidos simples.
 Efecto Doppler: Se produce cuando entre un foco de emisión y un observador, existe un movimiento relativo. En este caso, el observador detecta una frecuencia diferente a la frecuencia de emisión.
Ondas de choque: Estas ondas son una deformación de la transmisión normal de las ondas. Si ponemos como ejemplo una aeronave, ocurre lo siguiente: Cuando el emisor se desplaza con una velocidad suficiente para romper el flujo normal de las moléculas de aire que se apartan para dejar paso al objeto que se aproxima, las ondas se superponen, al no tener espacio para transmitirse.
Barrera del sonido: Término que se asocia a los efectos de compresibilidad experimentados por los aviones supersónicos cuando su velocidad con respecto al aire se aproxima a la velocidad local del sonido (1.223 km/h a nivel del mar en condiciones normales). Aunque estos aviones llegan a esas velocidades, nunca pasaran del límite de la velocidad de la luz, ya que es imposible.

BIBLIOGRAFIA
http://www.quimicaweb.net/grupo_trabajo_ccnn_2/tema4/tema4.htm

Recapitulación 1


Equipo
Resumen martes y jueves
1
El martes el profesor nos mostro el programa de física II, realizamos un esquema de este. El jueves realizamos experimentos para comprender los fenómenos ondulatorios, es decir como dejar caer una gota de agua en un recipiente lleno de agua y así medir el número de ondas  y otros experimentos.
2
El día martes realizamos un mapa conceptual acerca de las 8 primeras semanas de trabajo, y nos dio la bienvenida. El jueves realizamos una práctica acerca de las ondas, para medir el movimiento ondulatorio del agua, sonido y en las cuerdas.
3
Martes: El profesor nos dio la bienvenida a todo el grupo 409 A, realizamos un mapa conceptual de los temas  que estudiaremos durante este curso, y el Jueves realizamos una práctica muy interesante acerca de la onda, empleamos diferentes materiales como una cuerda, un cable y alambre a los cuales dimos un impulso para observar la longitud de onda. También observamos ondas mediante el agua y vimos el fenómeno de refracción.
4
Martes: dio la bienvenida el profesor, realizamos un mapa conceptual sobre los temas que trabajaremos en este semestre. Jueves : realizamos diversas pruebas sobre el movimiento ondulatorio  y sonidos que se producían escribimos diversos conceptos de los temas que tocaban en esta semana. :D
5
Martes: el profesor nos enseño la forma de trabajo, contestamos un examen diagnostico e hicimos un mapa conceptual (tipo reloj) con las semanas  y los temas a tratar en el semestre. Jueves realizamos diversos experimentos tratando el tema de las ondas, energías y fuerzas, etc. 
6
Martes: el profe nos dio la bienvenida, realizamos un pequeño examen diagnostico, un mapa conceptual de los temas a ver en el semestre y nos entrego el programa. Jueves: en la segunda sesión realizamos una práctica sobre fenómenos ondulatorios  que consistía en observar una gota de agua, un cable y oír el sonido de un reloj a través  de dos tubos de papel.

lunes, 17 de enero de 2011

PRACTICA & UNIDAD SEMANA ENERO 10-14


UNIDAD 4: FENÓMENOS ONDULATORIOS MECÁNICOS (10 h)
Equipo
4.1 Generalidades.
4.2 Parámetros que caracterizan el movimiento ondulatorio
4.3 Magnitudes relativas a fenómenos ondulatorios.
. 4.4 Fenómenos ondulatorios: reflexión, refracción, difracción, interferencia y resonancia de  ondas

1
Una onda es una perturbación que avanza o que se propaga en un medio material o incluso en el vacío.
A pesar de la naturaleza diversa de las perturbaciones que pueden originarlas, todas las ondas tienen un comportamiento semejante. El sonido es un tipo de onda que se propaga únicamente en presencia de un medio que haga de soporte de la perturbación. Los conceptos generales sobre ondas sirven para describir el sonido, pero, inversamente, los fenómenos sonoros permiten comprender mejor algunas de las características del comportamiento ondulatorio.

El movimiento ondulatorio aparece en casi todos los campos de la Física. Sin duda alguna, la noción más intuitiva que tenemos del movimiento ondulatorio está asociada con las ondas producidas por el viento o alguna otra perturbación sobre la superficie del agua. Oímos un foco sonoro por medio de las ondas (ondas sonoras) que se propagan en el aire o en cualquier otro medio material- y las vibraciones del propio foco (ejemplos: la cuerda de una guitarra, la columna de aire en un tubo sonoro, etc. ) constituyen una onda denominada onda estacionaria. Muchas de las propiedades de la luz se explican satisfactoriamente por medio de una teoría ondulatoria, estando firmemente establecido hoy día que las ondas luminosas tienen la misma naturaleza que las radiondas, las radiaciones infrarrojas y ultravioletas, los rayos X y la radiación gamma.
Uno de los progresos más importantes de la Física del siglo XX ha sido el descubrimiento de que toda la materia está dotada de propiedades ondulatorias (ondas de materia) y que, por ejemplo, un cristal difracta del mismo modo un haz de electrones que un haz de rayos X.

Reflexión

Sabemos, que una onda está caracterizada por un frente de onda, que son los puntos de propagación de la onda que poseen igual fase. Se denomina rayo, a un vector imaginario cuya dirección es perpendicular al frente de onda y su sentido es el de propagación del mismo.
Cuando un rayo se refleja en una superficie, se denominan: ángulo de incidencia, al formado por el rayo incidente y la normal; ángulo de reflexión, al formado por el rayo reflejado y la normal. Siendo la normal, la perpendicular a la superficie, esquematizado en la figura siguiente.

Refracción

Si una onda pasa de un medio a otro distinto, (por ej. distinta densidad), ésta cambia su velocidad y se produce una desviación de la dirección de propagación de la onda. Esto es lo que se denomina refracción

Difracción e Interferencia


 La difracción es un fenómeno característico de las ondas, éste se basa en el curvado y esparcido de las ondas cuando encuentran un obstáculo o al atravesar una rendija.

RESONANCIA

 Es la situación en la que un sistema mecánico, estructural o acústico vibra en respuesta a una fuerza aplicada con la frecuencia natural del sistema o con una frecuencia próxima. La frecuencia natural es aquella a la que el sistema vibraría si lo desviáramos de su posición de equilibrio y lo dejáramos moverse libremente. Si se excita un sistema mediante la aplicación continuada de fuerzas externas con esa frecuencia, la amplitud de la oscilación va creciendo y puede llevar a la destrucción del sistema.

El movimiento ondulatorio se mide por la frecuencia, es decir, por el número de ciclos u oscilaciones que tiene por segundo. La unidad de frecuencia es el hertz (Hz), que equivale a un ciclo por segundo.
Una onda es una perturbación que avanza o que se propaga en un medio material o incluso en el vacío. A pesar de la naturaleza diversa de las perturbaciones que pueden originarlas, todas las ondas tienen un comportamiento semejante. El sonido es un tipo de onda que se propaga únicamente en presencia de un medio que haga de soporte de la perturbación.
Algunas clases de ondas precisan para propagarse de la existencia de un medio material que haga el papel de soporte de la perturbación; se denominan genéricamente ondas mecánicas. El sonido, las ondas que se forman en la superficie del agua, las ondas en cuerdas, son algunos ejemplos de ondas mecánicas y corresponden a compresiones, deformaciones y, en general, a perturbaciones del medio que se propagan a través suyo. Sin embargo, existen ondas que pueden propasarse aun en ausencia de medio material, es decir, en el vacío. Son las ondas electromagnéticas o campos electromagnéticos viajeros; a esta segunda categoría pertenecen las ondas luminosas.
Independientemente de esta diferenciación, existen ciertas características que son comunes a todas las ondas, cualquiera que sea su naturaleza, y que en conjunto definen el llamado comportamiento ondulatorio,
El tipo de movimiento característico de las ondas se denomina movimiento ondulatorio. Su propiedad esencial es que no implica un transporte de materia de un punto a otro. Las partículas constituyentes del medio se desplazan relativamente poco respecto de su posición de equilibrio. Lo que avanza y progresa no son ellas, sino la perturbación que transmiten unas a otras. El movimiento ondulatorio supone únicamente un transporte de energía y de cantidad de movimiento.

Junto a una primera clasificación de las ondas en mecánicas y electromagnéticas, es posible distinguir diferentes tipos de ondas atendiendo a criterios distintos. En relación con su ámbito de propagación las ondas pueden clasificarse en:
  Monodimensionales: Son aquellas que, como las ondas en los muelles o en las cuerdas, se propagan a lo largo de una sola dirección del espacio.
  Bidimensionales: Se propagan en cualquiera de las direcciones de un plano de una superficie. Se denominan también ondas superficiales y a este grupo pertenecen las ondas que se producen en la superficie de un lago cuando se deja caer una piedra sobre él. Atendiendo a la periodicidad de la perturbación local que las origina, las ondas se clasifican en:
  Periódicas: Corresponden a la propagación de perturbaciones de características periódicas, como vibraciones u oscilaciones que suponen variaciones repetitivas de alguna propiedad. Así, en una cuerda unida por uno de sus extremos a un vibrador se propagará una onda periódica.
  No periódicas: La perturbación que las origina se da aisladamente y en el caso de que se repita, las perturbaciones sucesivas tienen características diferentes. Las ondas aisladas, como en el caso de las fichas de dominó, se denominan también pulsos. Según que la dirección de propagación coincida o no con la dirección en la que se produce la perturbación, las ondas pueden ser:
  Longitudinales: El movimiento local del medio alcanzado por la perturbación se efectúa en la dirección de avance de la onda. Un muelle que se comprime da lugar a una onda longitudinal.
  Transversales: La perturbación del medio se lleva a cabo en dirección perpendicular a la de propagación. En las ondas producidas en la superficie del agua las partículas vibran de arriba a abajo y viceversa, mientras que el movimiento ondulatorio progresa en el plano perpendicular. Lo mismo sucede en el caso de una cuerda; cada punto vibra en vertical, pero la perturbación avanza según la dirección de la línea horizontal. Ambas son ondas transversales.

2
Es el proceso por el cual se propaga energía de un lugar a otro sin transferencia de materia, mediante ondas magnéticas o electromagnéticas.

En una onda podemos observar; la amplitud, longitud de onda, período, frecuencia, velocidad de la onda, y la ecuación de onda.
Amplitud (A):
Elongación (x):
Fase
Período (T): 
Frecuencia (f)
Velocidad del movimiento ondulatorio (v)
La reflexión es el cambio de dirección de un rayo.
La refracción es el cambio de dirección que experimenta una onda al pasar de un medio material a otro.
La difracción se basa en el curvado y esparcido de las ondas cuando encuentran un obstáculo o al atravesar una rendija.
La interferencia es un fenómeno característico de todo movimiento ondulatorio, trátese de ondas en el agua, ondas sonoras u ondas de luz
La resonancia de ondas es la situación en la que un sistema mecánico, estructural o acústico vibra en respuesta a una fuerza aplicada.
3

Una onda es la propagación en el espacio de una perturbación armónica.
Parámetros de una onda:
En toda onda se definen los parámetros:
    y   perturbación que experimenta un punto x en el instante t
    A  valor máximo de la perturbación
      longitud de onda es el espacio que avanza la onda en un período T
    k   número de onda    k = 2
·  /  
    w  pulsación    w =  2
·  / T
    F  frecuencia, número de oscilaciones en un segundo  F = 1 / T
    v  velocidad de propagación de la onda   v =  / T =  v =  .
F = w / k
Para describir con precisión un movimiento ondulatorio hay que determinar las siguientes magnitudes comunes a todos ellos:
· Amplitud (A): Es la distancia máxima que puede separarse de su posición de equilibrio un punto que está realizando un movimiento vibratorio. Se mide en metros.
· Elongación (x): Es la distancia que separa a un punto que está vibrando de su posición de equilibrio. Se mide en metros.
· Fase: Se dice que dos partículas están en fase cuando se encuentran en el mismo estado de vibración.
· Período (T): Es el tiempo que emplea en una oscilación o vibración completa. También se define como el tiempo que transcurre hasta que una partícula vuelve a estar en el mismo estado de vibración. Se mide en segundos.
· Frecuencia (f): Es el número de oscilaciones completas que una partícula da en un segundo. Su unidad es el hertz o hertzio (Hz) que corresponde a una vibración cada segundo: 1Hz = 1
El período y la frecuencia son inversamente proporcionales: T = 1/f
· Velocidad del movimiento ondulatorio (v): Es la velocidad con la que se propaga la onda. Se expresa como el cociente entre la longitud de onda y el período.
Reflexión

Sabemos, que una onda está caracterizada por un frente de onda, que son los puntos de propagación de la onda que poseen igual fase. Se denomina rayo, a un vector imaginario cuya dirección es perpendicular al frente de onda y su sentido es el de propagación del mismo.
Cuando un rayo se refleja en una superficie, se denominan: ángulo de incidencia, al formado por el rayo incidente y la normal; ángulo de reflexión, al formado por el rayo reflejado y la normal. Siendo la normal, la perpendicular a la superficie, esquematizado en la figura siguiente.

Refracción

Si una onda pasa de un medio a otro distinto, (por ej. distinta densidad), ésta cambia su velocidad y se produce una desviación de la dirección de propagación de la onda. Esto es lo que se denomina refracción

Difracción e Interferencia


 La difracción es un fenómeno característico de las ondas, éste se basa en el curvado y esparcido de las ondas cuando encuentran un obstáculo o al atravesar una rendija.

RESONANCIA

 Es la situación en la que un sistema mecánico, estructural o acústico vibra en respuesta a una fuerza aplicada con la frecuencia natural del sistema o con una frecuencia próxima. La frecuencia natural es aquella a la que el sistema vibraría si lo desviáramos de su posición de equilibrio y lo dejáramos moverse libremente. Si se excita un sistema mediante la aplicación continuada de fuerzas externas con esa frecuencia, la amplitud de la oscilación va creciendo y puede llevar a la destrucción del sistema.

4
Proceso que propaga energía de un lugar a otro mediante ondas electromagneticas
Amplitud, longitud de onda, frecuencia, periodo, velocidad de onda
Amplitud, elongación, fase, periodo, velocidad de movimiento ondulatorio
Reflexión::
Cuando un rayo de luz, o bien la dirección de propagación de un frente de ondas, se encuentra con una superficie, la onda reflejada lo hará con un ángulo igual que el de la onda incidente, medido desde la perpendicular a la superficie donde se refleja la onda.
 REFRACCIÓN:La ley de refracción nos ofrece el ángulo que adopta la propagación de la onda en el segundo medio, medido también respecto a la vertical a la superficie, como se indica en la figura. Además los rayos de incidencia, reflexión y refracción se encuentran siempre en el mismo plano
DIFRACCIÓN: Ocurre cuando una onda al topar con el borde de un obstáculo deja de ir en línea recta para rodearlo.
INTERFERENCIA:Ocurre cuando dos ondas se combinan al encontrarse en el mismo punto del espacio.
RESONANCIA DE ONDAS: Es la situación en la que un sistema mecánico, estructural o acústico vibra en respuesta a una fuerza aplicada con la frecuencia natural del sistema o con una frecuencia próxima.

5
Se define como modelo de un sistema a la estructura cuyo comportamiento es conocido o se puede deducir a partir de bases teóricas, y que se asemeja bastante al sistema real en estudio.
Amplitud, longitud, onda, onda, periodo.
Amplitud, elongación, fase, periodo, velocidad del movimiento ondulatorio.
-REFLEXIÓN:
La ley de la reflexión se enuncia afirmando que, cuando un rayo de luz, o bien la dirección de propagación de un frente de ondas, se encuentra con una superficie, la onda reflejada lo hará con un ángulo igual que el de la onda incidente, medido desde la perpendicular a la superficie donde se refleja la onda.
 -REFRACCIÓN:La ley de refracción nos ofrece el ángulo que adopta la propagación de la onda en el segundo medio, medido también respecto a la vertical a la superficie, como se indica en la figura. Además los rayos de incidencia, reflexión y refracción se encuentran siempre en el mismo plano. La ley que relaciona el ángulo de incidencia con el de refracción se conoce como ley de Snell.
-DIFRACCIÓN: Ocurre cuando una onda al topar con el borde de un obstáculo deja de ir en línea recta para rodearlo.
-INTERFERENCIA:Ocurre cuando dos ondas se combinan al encontrarse en el mismo punto del espacio.
-RESONANCIA DE ONDAS: Es la situación en la que un sistema mecánico, estructural o acústico vibra en respuesta a una fuerza aplicada con la frecuencia natural del sistema o con una frecuencia próxima. La frecuencia natural es aquella a la que el sistema vibraría si lo desviáramos de su posición de equilibrio y lo dejáramos moverse libremente. Si se excita un sistema mediante la aplicación continuada de fuerzas externas con esa frecuencia, la amplitud de la oscilación va creciendo y puede llevar a la destrucción del sistema.

6
Se define como modelo de un sistema a la estructura cuyo comportamiento es conocido o se puede deducir a partir de bases teóricas, y que se asemeja bastante al sistema real en estudio.
En una onda podemos observar; la amplitud, longitud de onda, período, frecuencia, velocidad de la onda, y la ecuación de onda.
La amplitud, se lo denomina a la altura máxima que alcanza cada punto del medio al ser perturbado, es decir, la altura máxima de la perturbación.
La longitud de onda, es la distancia que se recorre por la perturbación al realizar una onda completa.
El período es el tiempo asociado a la longitud de onda que tarda para realizarse una onda toda completa.
La frecuencia es la cantidad de oscilaciones completas que se realizan en la unidad del tiempo, existe entre la frecuencia y el período una relación matemática , una es la inversa del otro.
· Amplitud (A): Es la distancia máxima que puede separarse de su posición de equilibrio un punto que está realizando un movimiento vibratorio. Se mide en metros.
· Elongación (x): Es la distancia que separa a un punto que está vibrando de su posición de equilibrio. Se mide en metros.
· Fase: Se dice que dos partículas están en fase cuando se encuentran en el mismo estado de vibración.
· Período (T): Es el tiempo que emplea en una oscilación o vibración completa. También se define como el tiempo que transcurre hasta que una partícula vuelve a estar en el mismo estado de vibración. Se mide en segundos.
· Frecuencia (f): Es el número de oscilaciones completas que una partícula da en un segundo. Su unidad es el hertz o hertzio (Hz) que corresponde a una vibración cada segundo: 1Hz = 1
El período y la frecuencia son inversamente proporcionales: T = 1/f
· Velocidad del movimiento ondulatorio (v): Es la velocidad con la que se propaga la onda. Se expresa como el cociente entre la longitud de onda y el período.
Reflexión::
Cuando un rayo de luz, o bien la dirección de propagación de un frente de ondas, se encuentra con una superficie, la onda reflejada lo hará con un ángulo igual que el de la onda incidente, medido desde la perpendicular a la superficie donde se refleja la onda.
 REFRACCIÓN:La ley de refracción nos ofrece el ángulo que adopta la propagación de la onda en el segundo medio, medido también respecto a la vertical a la superficie, como se indica en la figura. Además los rayos de incidencia, reflexión y refracción se encuentran siempre en el mismo plano
DIFRACCIÓN: Ocurre cuando una onda al topar con el borde de un obstáculo deja de ir en línea recta para rodearlo.
INTERFERENCIA:Ocurre cuando dos ondas se combinan al encontrarse en el mismo punto del espacio.
RESONANCIA DE ONDAS: Es la situación en la que un sistema mecánico, estructural o acústico vibra en respuesta a una fuerza aplicada con la frecuencia natural del sistema o con una frecuencia próxima.



Fenómenos ondulatorios

Material: Agua, cuerdas.
Generación de las ondas: colocar la cuera fija en un punto y proporcionarle un pulso, enseguida dos pulsos y posterormente tres pulsos.
Determinar las
Equipo
Ondas en la cuerda
Ondas en el cable
Ondas en el alambre
1
2
3

4
2
2
3
4
3
2
3

5
4
3
3
4
5
2
3
3
6
2
3
3


Observar las ondas que se generan sobre la superficie de agua:
Una gota, dos gotas tres gotas de agua sobre la superifice:
Reflexion de las ondas:
Equipo
Una gota
Dos gotas
Tres gotas
1



2



3



4
4
5
7
5



6
2
4
8